Category Archives: Laparoscopic surgery

Guest blog: Keyhole versus open surgery for oesophageal cancer

Authors: B. P. Müller-Stich, P. Probst, H. Nienhüser, S. Fazeli, J. Senft, E. Kalkum, P. Heger, R. Warschkow, F. Nickel, A.T. Billeter, P. P. Grimminger, C. Gutschow, T. S. Dabakuyo-Yonli, G. Piessen, M. Paireder, S. F. Schoppmann, D. L. van der Peet, M. A. Cuesta, P. van der Sluis, R. van Hillegersberg, A. H. Hölscher, M. K. Diener, T. Schmidt

Minimally invasive resection of esophageal cancer might be less traumatic than open resection and has the potential to reduce complications and even improve survival. In contrast, oncological radicality might be negatively affected by the minimal-invasive approach. The aim of this BJS study was to generate 1A level of evidence on the question whether a minimally invasive approach for oncological esophagectomy is advantageous. A systematic literature search was performed and exclusively randomized-controlled trials (RCTs) comparing minimally invasive to open oncological esophagectomy were included in a meta-analysis.

Among 3219 articles six RCTs (four trials from Europe, two from Asia) were found including 822 patients. Survival data and short-term postoperative outcome data was analyzed. From the four European trials (Biere et al. Lancet 2012; Paireder et al. Eur Surg 2018; van der Sluis et al. Ann Surg 2019; Mariette et al. NEJM 2019) individual patient data was retrieved to analyze survival according to the different surgical approaches. Overall survival (56% minimally invasive) vs. (52% open) and disease-free survival (54% vs. 50%) after three years were comparable. Strikingly, the risk of postoperative complications was significantly reduced to one third in the minimal invasive group mainly due to the reduction of pulmonary complications and, in particular, pneumonia. Other parameters, especially those indicating oncological quality of the resection as number of harvested lymph nodes, did not differ between the two groups while the operation time was shorter in the open group. There was no significant difference in the rate of anastomotic leakage, length of stay in the intensive care unit or in the hospital and in the perioperative mortality while total blood loss was lower in the minimal invasive group.

As this meta-analysis included only high-quality randomized controlled trials, it generates high level evidence for the perioperative advantages of minimal invasive esophagectomy. The minimally invasive approach significantly reduces the risk of complications compared to open surgery and does not impair long-term oncological outcome. It should therefore be the preferred approach for cancer-related oesophagectomy. 

External aspect of the operative field: DaVinci™ robotic system docked to the patient

Guest blog: What advantage does robot-assisted and transanal TME have over laparoscopy?

Authors: Jeroen C. Hol, Colin Sietses


Correspondence to: “Comparison of laparoscopic versus robot-assisted versus TaTME surgery for rectal cancer: a retrospective propensity score matched cohort study of short-term outcomes

Image source: Robinson Poffo et. al. Robotic surgery in Cardiology: a safe and effective procedure. under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The emergence of minimally invasive surgery has led to the development of three new surgical techniques for oncological rectal resections: laparoscopic, robot-assisted and transanal TME (TaTME). When we compared the three techniques executed in expert centres, we expected to find an advantage for one of the three techniques in terms of reduced complication rates. But contrary to our expectations, no difference was seen. There was one striking difference however, when comparing these techniques, though it might be something different than you might have thought. We shine a light on all three techniques to explain their advantages. 

Laparoscopy: minimally invasive surgery

In the 1980’s, Heald introduced the total mesorectal excision (TME) principle, which comprises excision of the rectum and its surrounding fatty envelop with preservation of the autonomic nerves [1]. TME has become the golden standard for surgical resection for rectal cancer and helped dropping local recurrence rates drastically. The past decades laparoscopy has been introduced and gradually replaced open surgery. Laparoscopy offers short term benefits of minimally invasive surgery, such as faster recovery and reduced complication rates [2, 3]. It offers similar long-term outcome as open surgery [4]. But laparoscopy is technically demanding because it is difficult to work with rigid instruments in the narrow and confined area of the pelvis. Therefore, conversion rates to open surgery of more than 10% were seen [5]. Conversion is linked to increased morbidity and worse oncological outcome [6]. In order to overcome those technical limitations of laparoscopic TME, new techniques have been introduced; robot-assisted TME and TaTME. 

Robot-assisted TME: the same, but different

Robot-assisted TME comprises the same approach as laparoscopy, but with the use of a surgical robot. The surgical robot provides a stable platform with supreme vision and supreme instrument handling. Surgeons thought this technique might improve results in terms of reduced complication rates and reduced conversion rates. However, the largest randomized trial so far comparing robot-assisted and laparoscopic TME failed to show any difference in these outcomes [7]. This might have been the result of a methodological flaw, because the robotic surgeons in that trial were not as experienced as their laparoscopic colleagues [8]. In our study, we tried to eliminate this by only selecting experienced centres that were beyond their learning curve. However, we did not see reduced complication rates or reduced conversion rates after robot-assisted TME compared to laparoscopy.

Transanal TME: a different approach

TaTME comprises a different approach to address the most difficult part of the dissection. In TaTME the most distal and difficult part of the rectum is dissected from below using a transanal insufflator port. However, this is a technically demanding technique and has a long learning curve [9]. Some initial series showed high loco regional recurrence rates, which even led to a halt of TaTME in Norway [10, 11]. The potential learning curve effect is now part of an ongoing debate about the oncological safety of this technique. Most initial results however looked promising and showed consistently good quality specimen and lower conversion rates [12, 13]. In our study, conversion rates, number of complete specimen and morbidity rates did not differ from the other laparoscopy and robot-assisted TME. 

Technological advantage 

The results of our study showed similar and acceptable short-term results for all three techniques in expert centres. The most striking difference was that in centres with robot-assisted or TaTME, more primary anastomoses were made. The technological advantage of the two new techniques could have contributed to higher restorative rates. Both robot-assisted and TaTME provide better access and visibility to the distal rectum, enabling surgeons to complete the TME dissection safely and create an anastomosis. Robot-assisted TME could overcome technical limitations of laparoscopy in the narrow pelvis thanks to the use of 3D vision, lack of tremor, and superior instrument handling, thereby facilitating safe creation of an anastomosis [7, 14]. TaTME does not need multiple staple firing to transect the distal rectum and without requiring conversion to open surgery [13]. In fact, TaTME does not need cross-stapling at all, preventing the creation of dog-ears which are prone to ischemia [15]. 

Patient’s perspective

In conclusion, the technological advantage of robot-assisted TME and TaTME manifests itself in higher restorative rates. Each technique seems to be equally beneficial in terms of oncological outcomes and morbidity. However, anastomosis creation, quality of life and functional outcome are becoming of great importance to patients. It seems to be that an increasing proportion of patients is now in pursue of an anastomosis. The overall anastomosis rate of more than 84% for robot-assisted and TaTME in our study was higher than the anastomosis rate of 50% in a previous national study [16]. A note of caution should be added, as an anastomosis might not be always better in terms of functional outcome and quality of life. Patients with a low anastomosis are at risk of developing severe low anterior resection syndrome (LARS) symptoms. Severe LARS symptoms can have a detrimental effect on quality of life [17].  Further research should be undertaken to investigate whether a higher anastomosis rate is beneficial in terms of quality of life and functional outcome and whether this higher anastomosis rate actually leads to increased patient satisfaction. 


1.         Heald, R.J., E.M. Husband, and R.D. Ryall, The mesorectum in rectal cancer surgery–the clue to pelvic recurrence? Br J Surg, 1982. 69(10): p. 613-6.

2.         Stevenson, A.R., et al., Effect of Laparoscopic-Assisted Resection vs Open Resection on Pathological Outcomes in Rectal Cancer: The ALaCaRT Randomized Clinical Trial. JAMA, 2015. 314(13): p. 1356-63.

3.         van der Pas, M.H., et al., Laparoscopic versus open surgery for rectal cancer (COLOR II): short-term outcomes of a randomised, phase 3 trial. Lancet Oncol, 2013. 14(3): p. 210-8.

4.         Bonjer, H.J., et al., A Randomized Trial of Laparoscopic versus Open Surgery for Rectal Cancer. N Engl J Med, 2015. 373(2): p. 194.

5.         Chen, K., et al., Laparoscopic versus open surgery for rectal cancer: A meta-analysis of classic randomized controlled trials and high-quality Nonrandomized Studies in the last 5 years. Int J Surg, 2017. 39: p. 1-10.

6.         Allaix, M.E., et al., Conversion of laparoscopic colorectal resection for cancer: What is the impact on short-term outcomes and survival? World J Gastroenterol, 2016. 22(37): p. 8304-8313.

7.         Jayne, D., et al., Effect of Robotic-Assisted vs Conventional Laparoscopic Surgery on Risk of Conversion to Open Laparotomy Among Patients Undergoing Resection for Rectal Cancer: The ROLARR Randomized Clinical Trial. JAMA, 2017. 318(16): p. 1569-1580.

8.         Corrigan, N., et al., Exploring and adjusting for potential learning effects in ROLARR: a randomised controlled trial comparing robotic-assisted vs. standard laparoscopic surgery for rectal cancer resection. Trials, 2018. 19(1): p. 339.

9.         Koedam, T.W.A., et al., Transanal total mesorectal excision for rectal cancer: evaluation of the learning curve.Tech Coloproctol, 2018. 22(4): p. 279-287.

10.       Larsen, S.G., et al., Norwegian moratorium on transanal total mesorectal excision. Br J Surg, 2019. 106(9): p. 1120-1121.

11.       van Oostendorp, S.E., et al., Locoregional recurrences after transanal total mesorectal excision of rectal cancer during implementation. Br J Surg, 2020.

12.       Detering, R., et al., Three-Year Nationwide Experience with Transanal Total Mesorectal Excision for Rectal Cancer in the Netherlands: A Propensity Score-Matched Comparison with Conventional Laparoscopic Total Mesorectal Excision. J Am Coll Surg, 2019. 228(3): p. 235-244 e1.

13.       Grass, J.K., et al., Systematic review analysis of robotic and transanal approaches in TME surgery- A systematic review of the current literature in regard to challenges in rectal cancer surgery. Eur J Surg Oncol, 2019. 45(4): p. 498-509.

14.       Kim, M.J., et al., Robot-assisted Versus Laparoscopic Surgery for Rectal Cancer: A Phase II Open Label Prospective Randomized Controlled Trial. Ann Surg, 2018. 267(2): p. 243-251.

15.       Penna, M., et al., Four anastomotic techniques following transanal total mesorectal excision (TaTME). Tech Coloproctol, 2016. 20(3): p. 185-91.

16.       Borstlap, W.A.A., et al., Anastomotic Leakage and Chronic Presacral Sinus Formation After Low Anterior Resection: Results From a Large Cross-sectional Study. Ann Surg, 2017. 266(5): p. 870-877.

17.       Emmertsen, K.J. and S. Laurberg, Low anterior resection syndrome score: development and validation of a symptom-based scoring system for bowel dysfunction after low anterior resection for rectal cancer. Ann Surg, 2012. 255(5): p. 922-8.