Category Archives: guest blog

External aspect of the operative field: DaVinci™ robotic system docked to the patient

Guest blog: What advantage does robot-assisted and transanal TME have over laparoscopy?

Authors: Jeroen C. Hol, Colin Sietses

Contact: j.c.hol@amsterdamumc.nl

Correspondence to: “Comparison of laparoscopic versus robot-assisted versus TaTME surgery for rectal cancer: a retrospective propensity score matched cohort study of short-term outcomes

Image source: Robinson Poffo et. al. Robotic surgery in Cardiology: a safe and effective procedure. https://creativecommons.org/licenses/by/4.0/ under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The emergence of minimally invasive surgery has led to the development of three new surgical techniques for oncological rectal resections: laparoscopic, robot-assisted and transanal TME (TaTME). When we compared the three techniques executed in expert centres, we expected to find an advantage for one of the three techniques in terms of reduced complication rates. But contrary to our expectations, no difference was seen. There was one striking difference however, when comparing these techniques, though it might be something different than you might have thought. We shine a light on all three techniques to explain their advantages. 

Laparoscopy: minimally invasive surgery

In the 1980’s, Heald introduced the total mesorectal excision (TME) principle, which comprises excision of the rectum and its surrounding fatty envelop with preservation of the autonomic nerves [1]. TME has become the golden standard for surgical resection for rectal cancer and helped dropping local recurrence rates drastically. The past decades laparoscopy has been introduced and gradually replaced open surgery. Laparoscopy offers short term benefits of minimally invasive surgery, such as faster recovery and reduced complication rates [2, 3]. It offers similar long-term outcome as open surgery [4]. But laparoscopy is technically demanding because it is difficult to work with rigid instruments in the narrow and confined area of the pelvis. Therefore, conversion rates to open surgery of more than 10% were seen [5]. Conversion is linked to increased morbidity and worse oncological outcome [6]. In order to overcome those technical limitations of laparoscopic TME, new techniques have been introduced; robot-assisted TME and TaTME. 

Robot-assisted TME: the same, but different

Robot-assisted TME comprises the same approach as laparoscopy, but with the use of a surgical robot. The surgical robot provides a stable platform with supreme vision and supreme instrument handling. Surgeons thought this technique might improve results in terms of reduced complication rates and reduced conversion rates. However, the largest randomized trial so far comparing robot-assisted and laparoscopic TME failed to show any difference in these outcomes [7]. This might have been the result of a methodological flaw, because the robotic surgeons in that trial were not as experienced as their laparoscopic colleagues [8]. In our study, we tried to eliminate this by only selecting experienced centres that were beyond their learning curve. However, we did not see reduced complication rates or reduced conversion rates after robot-assisted TME compared to laparoscopy.

Transanal TME: a different approach

TaTME comprises a different approach to address the most difficult part of the dissection. In TaTME the most distal and difficult part of the rectum is dissected from below using a transanal insufflator port. However, this is a technically demanding technique and has a long learning curve [9]. Some initial series showed high loco regional recurrence rates, which even led to a halt of TaTME in Norway [10, 11]. The potential learning curve effect is now part of an ongoing debate about the oncological safety of this technique. Most initial results however looked promising and showed consistently good quality specimen and lower conversion rates [12, 13]. In our study, conversion rates, number of complete specimen and morbidity rates did not differ from the other laparoscopy and robot-assisted TME. 

Technological advantage 

The results of our study showed similar and acceptable short-term results for all three techniques in expert centres. The most striking difference was that in centres with robot-assisted or TaTME, more primary anastomoses were made. The technological advantage of the two new techniques could have contributed to higher restorative rates. Both robot-assisted and TaTME provide better access and visibility to the distal rectum, enabling surgeons to complete the TME dissection safely and create an anastomosis. Robot-assisted TME could overcome technical limitations of laparoscopy in the narrow pelvis thanks to the use of 3D vision, lack of tremor, and superior instrument handling, thereby facilitating safe creation of an anastomosis [7, 14]. TaTME does not need multiple staple firing to transect the distal rectum and without requiring conversion to open surgery [13]. In fact, TaTME does not need cross-stapling at all, preventing the creation of dog-ears which are prone to ischemia [15]. 

Patient’s perspective

In conclusion, the technological advantage of robot-assisted TME and TaTME manifests itself in higher restorative rates. Each technique seems to be equally beneficial in terms of oncological outcomes and morbidity. However, anastomosis creation, quality of life and functional outcome are becoming of great importance to patients. It seems to be that an increasing proportion of patients is now in pursue of an anastomosis. The overall anastomosis rate of more than 84% for robot-assisted and TaTME in our study was higher than the anastomosis rate of 50% in a previous national study [16]. A note of caution should be added, as an anastomosis might not be always better in terms of functional outcome and quality of life. Patients with a low anastomosis are at risk of developing severe low anterior resection syndrome (LARS) symptoms. Severe LARS symptoms can have a detrimental effect on quality of life [17].  Further research should be undertaken to investigate whether a higher anastomosis rate is beneficial in terms of quality of life and functional outcome and whether this higher anastomosis rate actually leads to increased patient satisfaction. 

References

1.         Heald, R.J., E.M. Husband, and R.D. Ryall, The mesorectum in rectal cancer surgery–the clue to pelvic recurrence? Br J Surg, 1982. 69(10): p. 613-6.

2.         Stevenson, A.R., et al., Effect of Laparoscopic-Assisted Resection vs Open Resection on Pathological Outcomes in Rectal Cancer: The ALaCaRT Randomized Clinical Trial. JAMA, 2015. 314(13): p. 1356-63.

3.         van der Pas, M.H., et al., Laparoscopic versus open surgery for rectal cancer (COLOR II): short-term outcomes of a randomised, phase 3 trial. Lancet Oncol, 2013. 14(3): p. 210-8.

4.         Bonjer, H.J., et al., A Randomized Trial of Laparoscopic versus Open Surgery for Rectal Cancer. N Engl J Med, 2015. 373(2): p. 194.

5.         Chen, K., et al., Laparoscopic versus open surgery for rectal cancer: A meta-analysis of classic randomized controlled trials and high-quality Nonrandomized Studies in the last 5 years. Int J Surg, 2017. 39: p. 1-10.

6.         Allaix, M.E., et al., Conversion of laparoscopic colorectal resection for cancer: What is the impact on short-term outcomes and survival? World J Gastroenterol, 2016. 22(37): p. 8304-8313.

7.         Jayne, D., et al., Effect of Robotic-Assisted vs Conventional Laparoscopic Surgery on Risk of Conversion to Open Laparotomy Among Patients Undergoing Resection for Rectal Cancer: The ROLARR Randomized Clinical Trial. JAMA, 2017. 318(16): p. 1569-1580.

8.         Corrigan, N., et al., Exploring and adjusting for potential learning effects in ROLARR: a randomised controlled trial comparing robotic-assisted vs. standard laparoscopic surgery for rectal cancer resection. Trials, 2018. 19(1): p. 339.

9.         Koedam, T.W.A., et al., Transanal total mesorectal excision for rectal cancer: evaluation of the learning curve.Tech Coloproctol, 2018. 22(4): p. 279-287.

10.       Larsen, S.G., et al., Norwegian moratorium on transanal total mesorectal excision. Br J Surg, 2019. 106(9): p. 1120-1121.

11.       van Oostendorp, S.E., et al., Locoregional recurrences after transanal total mesorectal excision of rectal cancer during implementation. Br J Surg, 2020.

12.       Detering, R., et al., Three-Year Nationwide Experience with Transanal Total Mesorectal Excision for Rectal Cancer in the Netherlands: A Propensity Score-Matched Comparison with Conventional Laparoscopic Total Mesorectal Excision. J Am Coll Surg, 2019. 228(3): p. 235-244 e1.

13.       Grass, J.K., et al., Systematic review analysis of robotic and transanal approaches in TME surgery- A systematic review of the current literature in regard to challenges in rectal cancer surgery. Eur J Surg Oncol, 2019. 45(4): p. 498-509.

14.       Kim, M.J., et al., Robot-assisted Versus Laparoscopic Surgery for Rectal Cancer: A Phase II Open Label Prospective Randomized Controlled Trial. Ann Surg, 2018. 267(2): p. 243-251.

15.       Penna, M., et al., Four anastomotic techniques following transanal total mesorectal excision (TaTME). Tech Coloproctol, 2016. 20(3): p. 185-91.

16.       Borstlap, W.A.A., et al., Anastomotic Leakage and Chronic Presacral Sinus Formation After Low Anterior Resection: Results From a Large Cross-sectional Study. Ann Surg, 2017. 266(5): p. 870-877.

17.       Emmertsen, K.J. and S. Laurberg, Low anterior resection syndrome score: development and validation of a symptom-based scoring system for bowel dysfunction after low anterior resection for rectal cancer. Ann Surg, 2012. 255(5): p. 922-8.

Schematic of process for classifier design

Guest blog: 21st century surgery is digital

Ronan Cahill, Digital Surgery Unit, Mater Misericordiae University Hospital, Dublin, Ireland and UCD Centre for Precision Surgery, Dublin, Ireland.

Niall Hardy, UCD Centre for Precision Surgery, Dublin, Ireland.

Pol MacAonghusa, IBM Research, Dublin, Ireland.

Twitter @matersurgery Email: ronan.cahill@ucd.ie

Cancerous tissue behaves differently from non-cancerous tissue. Every academic oncology paper ever written tells us this. The appearances of any cancer primary (or indeed secondary lesion) result from biological and molecular processes that are the hallmarks of malignancy including dysregulated cell function and composition, host-cancer stromal and inflammatory response and angiogenesis. However, we surgeons haven’t really yet been able to exploit this knowledge during surgery in a way that helps us make a better operation. Instead, our learning and research about oncological cellular processes has predominantly advanced through basic science geared more towards perioperative prognostication and/or adjuvant therapy stratification. Wouldn’t it be great if realisation of cancer microprocesses could usefully inform decision-making intraoperatively?

We’ve just published an initial report in the BJS showing this very thing – that it is indeed possible to ‘see’ cancer by its behaviour in real-time intraoperatively. We’ve used Artificial Intelligence (AI) methods in combination with near-infrared fluorescence laparoendoscopy to judge and classify neoplastic tissue nature through the observation of differential dye diffusion through the region of interest in comparison with that happening in normal tissue being viewed alongside it. Through our understanding of biophysics (flow parameters and light/dye interaction properties), a lot of information can be drawn out over short periods of times via advanced computer vision methodology. With surgical video recording in the region of 30 frames per second, big data generates over the time frame of a few minutes.  While the gross signal shifts are discernible even without AI, smart machine learning capabilities certainly mean their interrogation becomes really usable in the provision of classification data within moments. What’s more, while we’ve focused initially on colorectal cancer, the processes we are exploiting seem common across other solid cancers and using other camera-based imaging systems. By combining with the considerable amount of knowledge we already have accrued regarding tissue biology, chemistry, physics as relate and indeed surgery, our AI methods are giving explainable and more importantly interpretable recommendations with confidence using a smaller dataset than that demanded by deep learning methodologies.

This though is just an early exemplar of what’s becoming possible through ‘Digital Surgery’, a concept that seems far more likely to transform contemporary surgical practice than our current general surgery “robotic” systems, hulking electromechanical tools entirely dependent on the user – a rather 20th century concept! Indeed, there is sophisticated technology everywhere in today’s operating theatres – surgeons sure don’t lack technical capability. Yet often despite vaulting costs, advance of real, value-based outcomes has been disappointingly marginal in comparison over the last two decades. The key bit for evolved surgery is instead going to be assisting surgeons to make the best decision possible for each individual patient by providing useful, discerning information regarding the surgery happening right now, and somehow plugging this case circumstances directly into the broad knowledge bank of expertise we have accrued as a profession (and not just be dependent on any single surgeon’s own experience).

To do this we need to realise the importance of visualisation in surgical procedures versus manual dexterity.  All surgery is performed through the visual interpretation of tissue appearances and proceeds via the perception-action cycle (‘sense, predict, act, adjust’). This is most evident during minimally invasive operations where a camera is used to display internal images on a screen but applies of course to open procedures as well. As all intraoperative decisions are made by the surgeon, the entire purpose of surgical imaging has been to present the best (‘most visually appealing’) picture to the surgeon for this purpose. Experiential surgical training is for the purpose of developing the ‘surgical eye’, that is learning how to make qualitative intraoperative judgments reliably to a reasonable standard. We haven’t however gotten the most out of the computer attached to the camera beyond image processing where we have concerned ourselves with display resolutions and widths. 

Imagine instead if some useful added interpretations of images could be made without adding extra cognitive burden to the surgeon, perhaps with straightforward on-screen prompts to better personalise decisions? This would be particularly exciting if these data were not otherwise easily realisable by human cognition alone and could be immediately and directly relevant to the person undergoing the operation. Every operation is in effect a unique undertaking, informed by probabilities accruing through individual and collected prior experience for sure but a new thing in and of itself for which the outcome at the time of its performance is unknown. How this individual patient differs from others and most especially how might an adverse outcome be avoided is a crucial thing to flag before any irreversible surgical step that commits an inevitable future. 

Right now, we are in a golden age of imaging. This is intricately linked to advances in computer processing and sharing power along with AI methods. This means we can harvest great additional information from the natural world around us across the spectrum of enormous (radio waves spanning the universe) to tiny (high resolution atomic imaging) distances and apply methods to help crystalise what this means to the observer. While a lot of AI is being directed at the easier and safer areas of standard patient cohort datasets, increasingly it’s possible to apply computer intelligence to the data rich surgical video feeds being generated routinely during operations to present insights to the surgeon. While early first steps at the moment relate to rather bread and butter applications such as instrument or lesion recognition and tracking as well as digital subtraction of smoke or anonymization protocols to prevent inadvertent capture of operating rooms teams when the camera is outside the patient, soon the capability to parse, segment and foretell likely best next operative steps will be possible at scale.

At present, the biggest limitation is that surgery lacks large warehoused archives of annotated imagery because operative video is a more complex dataset to scrutinise than the narrower image datasets available in specialities such as radiology, pathology and ophthalmology. Thanks to advances in computing, this is changing. Surgical video aggregation to enable building of representative cohorts is increasingly possible and, by combining with metadata and surgical insights, its full value can begin to be realised. GDPR frameworks provide structure and surgeons are increasingly understanding of the value of collaborating in research, education and practice development. However, while certain siloed sites focused around specific industry projects are already manifesting, the key area for greatest general advance lies within the surgical community combining broadly to construct appropriately developed and secured, curated video banks of procedures that can then be made accessible to entities from regulators and standard bodies, academia and indeed corporations capable of advancing surgery. This gives by far the greatest chance of the best of surgical traditions carrying through the 21st century while our weak spots are fortified for better surgery in the public interest.

Further reading: 
Artificial intelligence indocyanine green (ICG) perfusion for colorectal cancer intra-operative tissue classification.
 Cahill RA, O’Shea DF, Khan MF, Khokhar HA, Epperlein JP, Mac Aonghusa PG, Nair R, Zhuk SM.Br J Surg. 2021 Jan 27;108(1):5-9. https://doi.org/10.1093/bjs/znaa004 PMID: 33640921 

The age of surgical operative video big data – My bicycle or our park? Cahill RA, MacAonghusa P, Mortensen N. The Surgeon 2021 Epub ahead of press https://doi.org/10.1016/j.surge.2021.03.006

Ways of seeing – it’s all in the image. Cahill RA. Colorectal Dis. 2018 Jun;20(6):467-468. https://doi.org/10.1111/codi.14265 PMID: 29864253

The Anatomy Lesson of Dr. Nicolaes Tulp by Rembrandt

Guest post: Why should you care about the history of surgery?

Dr. Tyler Rouse is an anatomical pathologist at the Huron Perth Healthcare Alliance in Stratford, Canada, and an adjunct professor in the Department of Pathology at the Schulich School of Medicine and Dentistry, Western University. He is the creator and host of the history of surgery podcast ‘Legends of Surgery’.

Why should you care about the history of surgery?

To begin with, it is unquestionably fascinating and fun. The history of surgery is filled with heroes and villains, triumphs and tragedies, progress and setbacks, but continuously moves towards the easing of suffering and the protection and prolonging of life. Yet there is something deeper and more meaningful that can be gained from the study of history. It grounds us, gives us a richer understanding of the world in which we live, and tells us how we arrived at this point in history, and provides a sense of identity and belonging in the world. 

The knowledge we now possess finds its origins in the writings of Hippocrates and Galen and the classical world of ancient Greece and Rome, which is reflected in the Latin and Greek roots of the words of the ‘lingua franca’ of medicine that we use every day. This was preserved and advanced during the Dark Ages by the physicians and surgeons of the Islamic Golden Age, and then “rediscovered” in the Renaissance, until the scientific revolution of the Age of Enlightenment shook us from the bonds of classical dogma and led to an explosion of medical and surgical knowledge through experimentation. The Industrial Age created added significant technological advances, arguably the most important of which was the ability to inhibit pain and avoid infection, allowing surgeons to delve ever deeper into the mysteries of the human body. This opened the window to the contributions from surgeons from across the globe that have brought us to this moment in time. This accumulated knowledge has been passed down from master to apprentice, teacher to learner, staff to student, in an unbroken chain that directly links us with the surgeons of the past.

Their influence is all around us when we step into the operating theatre, from hand washing (Semmelweiss), to the asepsis of the operative field (Lister), to the wearing of surgical gloves (Halsted) to the countless eponymously named instruments, procedures, and anatomical structures, that are part of every operating theatre around the world. Just about every part of an operation links us to the past, and to the people that came before us who discovered this hard-won knowledge. 

File:Use of the Lister carbolic spray, Antiseptic surgery, 1882. Wellcome M0003436.jpg
Use of the Lister carbolic spray. Credit: Antiseptic surgery : its principles, practice, history and results / by W. Watson Cheyne. Public Domain Mark. From Wellcome Images.

Studying these individual surgeons can both inspire us, and serve as a warning by demonstrating how good intentions can lead us astray. In addition to their contributions to surgical practice, many surgeons were basic scientists, Nobel Prize winners, public health advocates, artists, musicians, writers, and influential public figures that captured the imagination of society, both with their innovative breakthroughs and sometimes, their larger than life personalities. The English surgeon Percival Potts discovered the link between chimney sweeping and scrotal cancer in 1775, considered the first identification of an environmental carcinogen. American neurosurgeon Harvey Cushing won a Pulitzer Prize for his biography on Sir William Osler. South African surgeon Christiaan Barnard, who performed the world’s first successful heart transplant, was also an outspoken opponent of apartheid. And there are countless other examples.

Harvey Williams Cushing. Photograph by W.(?)W.B.
Harvey Williams Cushing. Credit: Harvey Williams Cushing. Photograph by W.(?)W.B. Credit: Wellcome CollectionAttribution 4.0 International (CC BY 4.0)

Surgeons have also experimented on the unwilling; for example, J. Marion Sims (of Sims retractor fame) did much of his ground-breaking work on obstetrical fistulas on African-American enslaved women in the mid-1800s. A number of surgeons were associated with the Nazi party, including Nobel Prize winner and French surgeon-scientist Alexis Carrel and the pioneering German thoracic surgeon Ferdinand Sauerbruch. And surgeons have taken part in the eugenics movement and forced sterilization, among other failings. Studying these examples shows us how surgery is not practiced in isolation, but rather affects and is effected by the world, society, and history. Surgeons have the potential to accomplish great things, but are also human, with all the flaws that come with it, and are not immune to the ills that plague society at large. It is important to recognize the bad with the good, and to ensure that history does not repeat itself.

Finally, one of the greatest challenges in medicine and surgery today is the epidemic of burnout, the causes of which are multifactorial, but includes a loss of finding meaning and purpose in work, and a feeling of disconnection. I believe that knowledge of our shared history, and studying those that came before us, can give a sense of identity and meaning to the practice of surgery. In an era of increasingly burdensome administrative tasks, it is easy to feel a sense of detachment and futility. But by studying the history of surgery, a greater sense of being rooted in community and purpose can be nurtured, and inspiration can be found to further the development of surgery towards better treatments and innovations, and to advocate for the patients that, too, have been a part of this shared history. 

Senior surgeon training junior surgeon in laparoscopy

Guest post: The Great Danes? Surgical training on a 37-hour week

By Mr Henry G Smith MBBS MRCS PhD, specialist registrar at The Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen

The number of hours in training that it takes for a surgical trainee to achieve both clinical and technical competence is a seemingly endless topic of debate. The significant global
variation in a surgical trainee’s average hourly week begs the question as to why such variation exists and to what extent all training programmes are created equal (1). Given the increasing recognition of burnout amongst medical professionals, and its association with excessive workloads, it is reasonable to think a shorter working week may benefit the surgical trainee’s wellbeing (2). However, any potential benefits much be weighed against the risk of reducing training opportunities and clinical exposure. Having personal experience of both British, with its nominal 48-hour working week, and Danish general surgical training, where surgeons work a 37-hour week, it is clear that whilst these countries have very similar healthcare systems, they differ markedly in their approach to training. Whilst neither training programme is without its limitations, their differences highlight potential ways in which the efficiency of surgical training may be improved.

The most striking difference between the British and Danish programmes is the absence of the ‘firm’ structure in Denmark. Trainees belong to the department rather than to subspeciality specific teams. The same is true of acutely admitted patients, who whilst broadly divided into those with upper and lower gastrointestinal conditions are not ‘owned’ by the consultant who was on call at the time of admission. As a consequence, there are no ward rounds, post-take or otherwise. Instead, the acute and elective inpatients are divided more or less equally between consultants and trainees alike, with a typical ratio of 2-3 patients to be seen by a single doctor each day. The lack of a rigid structure dictated by a team-based ward round leads to much greater flexibility in all other aspects of the working day. These days are thematic, with trainees having 4 major functions: elective operations, endoscopy, outpatient clinics and on-calls. When a trainee is not assigned to one of these functions, they have zero hours to be used as they see fit.

The flexibility of the Danish system brings two major advantages. The first is that the structure leaves the trainee with the feeling that the majority of time spent at work is spent training. That feeling is emphasised by the organisation of the operating days in particular.

Whilst the trainee spends undoubtedly fewer days in an elective theatre than in the British system, these days are almost exclusively spent attending training lists. Attended by a single trainee and a consultant, comprising repeated exposure to the same operation and booked on the presumption that the trainee will be the primary surgeon, these lists maximise training opportunities. The same is more or less true in endoscopy, where the trainee has their own full day list, with a supervisor on hand if needed. The second advantage is that the planning of absence from work for annual leave, courses or conferences is far less complicated. The minimum number of trainees required at work is determined at a departmental level, avoiding the need to organise cross cover between firms. As such, denied requests to attend conferences are very much the exception rather than the rule and it is almost unheard of that a trainee would be unable to take all of their allocated leave during a rotation.

These structural differences are accompanied by an in-house culture that not only prioritises training but is also ferocious in its defence of working conditions. There is a greater expectation for trainees to be actively involved, at least in part, in the majority of operations, and independent operating is encouraged at a much earlier stage. Senior house officers are expected to be capable of independently performing common acute operations, such as appendicectomies, and whilst consultants are often present for laparotomies, their presence is not compulsory. ‘Service provision’ is rarely mentioned, perhaps a reflection of a healthcare system that is better resourced to match the demands of its population. With regard to the working environment, trainees hold a structured monthly meeting for both positive and negative feedback on issues ranging from training opportunities and supervision to the frequency of on-call duties and conditions of the on-call rooms. The vocal complaints in a recent meeting of the comfiness of the on-call beds are not only a far cry from trying to catch some rest on an old sofa in a British hospital mess but also give an insight into how seriously the Danes take their working conditions.

However, not all the differences are positive. The greater flexibility in the Danish system
places greater demands on the discipline of its trainees. Although there are still dedicated
rotations in trauma and tertiary centres, the lack of other subspecialty specific rotations
means that the trainee must take more responsibility for ensuring that they meet the specific requirements of the training programme. Whilst focused trainees may turn this to their advantage, allowing them to focus on their preferred subspecialty at an earlier stage of training, those who are as of yet undecided may be at risk of drifting in a less structured system. In a similar vein, for a trainee raised in the British system, the absence of the firm structure is accompanied by a sense of a lack of belonging, at least at the beginning of a new placement, although this is somewhat lessened by the daily morning conferences, attended by the whole department. A further concern is the consequences a more flexible system has on the quality and continuity of care. It is not uncommon for acutely admitted patients to be seen by a different doctor each day, a situation commonly thought to increase the risk of delays in discharge or investigations. However, this does not appear to have an adverse effect on patient outcomes, with a 30-day mortality following high-risk laparotomies of approximately 20% in Denmark, mirroring the reports from the National Emergency Laparotomy Audit (NELA) in Britain (3-5). Finally, one must remember that achieving competence as a surgeon is not only about developing technical skills. As the old saying goes “good surgeons know how to operate, better surgeons know when to operate, and the best surgeons know when not to operate”. Although the Danes may have a more efficient approach to the technical aspects of training, it is undeniable that the clinical exposure of British trainees is far greater. The cumulative clinical experience of following both elective and acute patients from admission to discharge is difficult to replicate and whilst any differences in decision-making seem to have disappeared by the end of training, these skills appear to develop more rapidly in the British systems. Disruptions to the continuity of care present another barrier for clinical exposure in the Danish system, with the following up of the patients seen on-call or in the operating theatre left to the trainee’s own initiative.

The hourly week occupies much of the debate on surgical training and, in doing so,
prioritises quantity over quality of training. With a focus on maximising the efficacy of
training opportunities, the Danish surgical training system demonstrates how surgeons can be effectively trained on a shorter working week. Whilst this system has its own limitations, the organisation of a trainee’s operative commitments in particular provides an example for other systems to follow. Surgical training faces major challenges ahead, with a global pandemic that has not only limited training opportunities but also taken an inevitable toll on workforce morale (6). Furthermore, the backlog of operations cancelled since the beginning of the pandemic is likely to place a huge emphasis on efficiency in operating theatres, which may have further negative effects on training opportunities (7-8). However, the return of some degree of normality will also offer the opportunity to reconsider the structure of training and perhaps in doing so, the best aspects of these respective training systems could be combined, shifting the focus away from the number of hours spent at work to the amount of time spent training.

References

  1. Jackson GP, Tarpley J. How long does it take to train a surgeon? British Medical
    Journal. 2009, 5;339:b4260.
  2. Galaiya R, Kinross J, Arulampalam T. Factors associated with burnout syndromes in
    surgeons: a systematic review. Annals of the Royal College of Surgeons of England.
    2020, 102(6):401-407.
  3. Cihoric M, Tengberg LT, Foss NB, et al. Functional performance and 30-day post-
    operative mortality after emergency laparotomy – a retrospective, multicenter,
    observational cohort study of 1084 patients. Perioperative Medicine. 2020, 9(13).
  4. Peacock O , Bassett M G, Kuryba A, et al., National Emergency Laparotomy Audit (NELA) Project Team. Thirty-day mortality in patients undergoing laparotomy for small bowel obstruction. Br J Sur. 2018 Jul;105(8):1006-1013. doi: 10.1002/bjs.10812. Epub 2018 Mar 30
  5. Boyd-Carson H, Doleman B, Herrod P J J, et al., on behalf of the NELA Collaboration, Association between surgeon special interest and mortality after emergency laparotomy, British Journal of Surgery, Volume 106, Issue 7, June 2019, Pages 940–948, https://doi.org/10.1002/bjs.11146
  6. COVIDSurg Collaborative. Elective surgery cancellations due to the COVID-19 pandemic: global predictive modelling to inform surgical recovery plans. Br J Surg. 2020;107(11):1440-1449. doi:10.1002/bjs.11746
  7. Rai O, Fernandes R. COVID-19 and the reintroduction of surgical training. British Journal of Surgery, Volume 108, Issue 1, January 2021, Page e6, https://doi.org/10.1093/bjs/znaa003
  8. Hennessy O, Fowler A L, Hennessy C, et al. Covid 19 and Surgical training: Carpe Diem. British Journal of Surgery, Volume 107, Issue 12, November 2020, Page e591, https://doi.org/10.1002/bjs.12032

Healthcare workers wearing PPE and surgical gown, Creative Commons image

Guest post: COVID Secure Surgery

Authors:
Aneel Bhangu (@aneelbhangu), University Hospital Birmingham, UK, a.a.bhangu@bham.ac.uk

Dhruv Ghosh, CMC Ludhiana, India 

Maria Picciochi (@MariaPicciochi), Hospital Prof Doutor Fernando Fonseca, Portugal

Dmitri Nepogodiev (@dnepo), University Hospital Birmingham, UK

Virtually all elective surgical services around the world suffered some form of shutdown due to the COVID-19 pandemic1. Now, patients and surgeons are desperately looking to re-start services. Efforts to re-start after the first waves faced multifactorial challenges, including patient safety and ensuring enough staff along the whole patient pathway to support operating theatre availablity.2,3

The impact of the reduction in surgical capacity is likely to be staggering. Initial estimates of 28 million cancelled operations likely escalated to 50 million towards Autumn 2020, and may now be in excess of 100 million. That is only one part of the story, since the many undiagnosed patients with surgical conditions sitting in the community over the last 12 months may never make it to a surgeon or waiting list. Without adequate surgical capacity, there will be a major global decline in population health due to the burden of a full range of inadequately treated non-communicable diseases. 

There is no single factor or solution that will enable surgery to re-start at scale, quickly. There is no single set of solutions that will work across every region. Since every single hospital around the world functions differently, context specific and whole system solutions are needed. 

Vaccination will hopefully provide solutions to the current pandemic, although the global rollout is occurring at different paces globally, meaning surgical recoveries will differ. Cultural challenges across countries are adding to this variation. Unlike acute major incidents which disable elective surgical but are quickly over (e.g. major trauma or bombings), this pandemic has exposed specific, longer-term weaknesses of current systems. Post-pandemic planning will now happen across all spectrums of society. Surgeons need to lead efforts to create resilient elective surgical services that are pandemic resistant for the future, advocating for hospital and political awareness. 

The COVIDSurg collaborative has taken a data driven approach to supporting safe surgery, and for 2021-2022 will provide further data to support re-starts globally. Data is needed across the whole system and patient pathway, that includes referrals, preoperative selection, perioperative testing and safety, postoperative risk reduction, and structural organisation of hospitals4–6

Figure 1 – Centres enrolled in COVIDSurg studies

Learning from other non-medical disciplines, surgeons have little barometer of how secure their elective surgical services are compared to everyone else’s. COVIDSurg will deliver a validated Elective Surgery Resilience Index in the first half of 2021, allowing surgeons to test their systems and identify areas for immediate strengthening. 

Re-starting surgery safely will be a complex interplay of these multiple factors. Not all resources will be available across all regions, and in some resource limited settings, surgery is at risk of being seen as a burden. To further support the re-start, an easily accessible, digital, online toolkit is needed that will provide key take-home messages and downloadable pathways for surgical teams to take and adapt. This will include the ability to self-certify individual department and hospital level of COVID Secure Surgery. This will provide the building blocks to provide ring-fenced, pandemic secure surgery by 2030.

Conflicts of interest: We have no conflicts of interest to declare.

Funding: No funding was received for this blog article.

References:

1.        COVIDSurg Collaborative. Elective surgery cancellations due to the COVID-19 pandemic: global predictive modelling to inform surgical recovery plans. Br J Surg. 2020;107(11):1440-1449. doi:10.1002/bjs.11746

2.        COVIDSurg Collaborative. Mortality and pulmonary complications in patients undergoing surgery with perioperative sars-cov-2 infection: An international cohort study. Lancet. 2020;396(10243):27-38. doi:10.1016/S0140-6736(20)31182-X

3.        COVIDSurg Collaborative. COVID-19-related absence among surgeons: development of an international surgical workforce prediction model. BJS Open. doi:10.1093/BJSOPEN/ZRAA021

4.        COVIDSurg Collaborative. Outcomes from elective colorectal cancer surgery during the SARS‐CoV‐2 pandemic. Color Dis. December 2020:codi.15431. doi:10.1111/codi.15431

5.        COVIDSurg Collaborative. Elective cancer surgery in COVID-19–Free surgical pathways during the SARS-cov-2 pandemic: An international, multicenter, comparative cohort study. J Clin Oncol. 2021;39(1):66-78. doi:10.1200/JCO.20.01933

6.        COVIDSurg Collaborative. Preoperative nasopharyngeal swab testing and postoperative pulmonary complications in patients undergoing elective surgery during the SARS-CoV-2 pandemic. Br J Surg. 2021;108(1):88-96. doi:10.1093/bjs/znaa051

Holding hands by the beach

Guest post: Oncological endpoints and human relationships

By Deep Chakrabarti, MD, Senior Resident, Department of Radiotherapy, King George’s Medical University, Lucknow, India


I reach the radiotherapy outpatient department on a Monday morning geared up and ready for the week ahead. With thoughts of a busy day and a busy week lying ahead of me, little do I appreciate then that my experiences over the week will continually repeat in cycles, much like the entire human existence and offer me reflections on life. The pandemic has made many of us re-evaluate ourselves and our relationships, many of which have been strained.

I believe that oncology endpoints can be assumed to mimic human relationships. A 70-year-old frail gentleman has a metastatic oral cavity cancer and is planned for palliative therapy with oral methotrexate. While his overall survival will most likely be a few months, we offer him oral metronomic chemotherapy and supportive care aiming for a decent quality of life. Most chemotherapeutic agents offer a similar overall survival of around six to nine months in the context of advanced or metastatic head and neck cancers. Similarly, in life, some relationships come with an expiry date, no matter what.

A 50-year-old gentleman presents with a recurrence of his locally advanced rectal cancer nine months after completing adjuvant treatment. Our surgical colleagues have seen him, and his disease has been deemed unresectable. He has been started on chemotherapy with oxaliplatin and capecitabine and has tolerated the first two cycles.  I know well it is a matter of time that the drugs will delay progression. Progression-free survival (PFS) is a popular endpoint in oncology research that loosely means the time it takes for a disease to get worse.1 Interpersonal relationships are often subject to intense emotional and mental stress, that require continual repairing. However, situations arise when it may not be possible to start on a clean slate entirely, and one is left with no choice but to accept whatever has happened and move on. In other words, one has to take the inevitable that the relationship cannot be “cured”, but further worsening can be avoided. For some tumours like advanced ovarian or colorectal cancers, PFS may even be a loose surrogate for overall survival and may often be nearly equal to overall survival. Likewise, some relationships may not worsen again after one episode when both parties make conscious efforts to put things behind them and move on.

On Tuesday, I see a 40-year-old lady with visceral dissemination of hormone receptor-positive breast cancer receiving systemic chemotherapy. While she and her family have been counselled about their predicament, they may still have some time with their loved one to fulfil their wishes. Like the overall tenure of each human relationship, overall survival parameters vary grossly from one cancer to another. For example, a metastatic gall bladder cancer is likely to be fatal in a matter of mere months, even with the best available chemotherapy. On the contrary, a man with metastatic prostate cancer can be expected to survive a few years with the current standards of care. 

Overall survival is the gold standard when it comes to measuring the worth of any cancer-directed intervention.2However, in patients or in relationships where one knows that the writing is on the wall, quality of life, or quality of the time left in the relationship is a premium. Quality of life is a crucial metric that seeks to quantify the actual well-being of an individual.3 While one may explore multiple therapeutic options to prolong life, one has to make a conscious decision as to how the prolongation will impact on its quality. Merely prolonging life while impairing its quality is detrimental. Similarly, when one knows that a relationship is irreparable, it is best to consider its quality than to keep trying to prolong it endlessly.

On Wednesday, I get an urgent consultation request for a lady with non-small cell lung cancer admitted in the neurosurgical ward who has presented with acute onset lower limb weakness with bladder and bowel involvement and has been diagnosed to have metastatic spinal cord compression. She is 70 years old with a WHO performance score of 2. The surgeons have already determined she is not a candidate for decompression. She is taken for urgent palliation with a single fraction of radiotherapy, with adequate steroid cover. Similar to the previous example, while her fate is probably already decided, but the urgent intervention offers to improve her quality of life, even if minimally.

On Friday, I get a call for radiotherapy planning for a patient who has cervical cancer with brain metastases and had received primary chemoradiotherapy three years ago. She is 74 years old, with a WHO performance score of 3 and requires continuous oxygen support. A decision is taken not to treat her with radiotherapy to the brain but offer her supportive care. Her three-year disease-free interval reminds me that a repaired relationship may suffer a relapse at any time. And sometimes a relapse can be so devastating that it does not offer much in terms of salvage.

On Saturdays, I see my radiotherapy patients on their weekly follow-up. We have a preponderance of head and neck cancer patients who will often present with grade II or III acute skin and mucosal toxicities as they move into the last weeks of therapy. Acute radiation reactions are defined as those occurring within 90 days of treatment and usually heal entirely with adequate care. However, late reactions or those occurring beyond 90 days persist and never completely heal. Some acute reactions may persist as late reactions, the so-called “consequential late reactions” (for example, chronic xerostomia is a consequential late reaction to acute xerostomia). For human relations, an acute bad episode may be amenable to rationalization and understanding, that may completely disappear like the resolution of acute radiation mucositis. But they may even persist, and then never go away completely. Therefore, the role of supportive care cannot be overemphasized, both in cancer care and in human relations.

The previous year has been a revelation for all of us. While it has subjected us to intense mental, emotional, and physical stress4, we have gained a thorough idea of what is vital in our lives. It is imperative that human relationships are valued on par with professional commitments, and the ongoing global crisis should teach us to prioritize personal contentment over professional gains. A morbidity audit from the CDC in August 2020 depicted that nearly one in four healthcare professionals had considered suicide in the immediately preceding one month for their troubles.5 While this is an alarmingly high number, it depicts the frailties ingrained in each of us and reiterates that before clinicians, we are humans. Even when our human forms are damaged and broken, sometimes beyond repair, empathy and patience for ourselves and our fellow beings might hold the key in this perennial struggle. May the progression-free survival of our relationships always closely mimic their overall survival.6 After all, as said by Rabindranath Tagore, “faith is the bird that feels the light and sings when the dawn is still dark.”

Conflicts of interest: There are no conflicts of interest to declare.

Funding: There is no funding to declare.

References

1         Korn RL, Crowley JJ. Overview: Progression-Free Survival as an Endpoint in Clinical Trials with Solid Tumors. Clin Cancer Res 2013; 19: 2607–12.

2         Driscoll JJ, Rixe O. Overall Survival: Still the Gold Standard. Cancer J 2009; 15: 401–5.

3         Selby P. The value of quality of life scores in clinical cancer research. Eur J Cancer 1993; 29A: 1656–7.

4.        Vallée M, Kutchukian  S , Pradère  B et al. Prospective and observational study of COVID-19’s impact on mental health and training of young surgeons in France. Br J Surg. 2020 Oct;107(11):e486-e488.  doi: 10.1002/bjs.11947.

5         Czeisler MÉ, Lane RI, Petrosky E, et al. Mental Health, Substance Use, and Suicidal Ideation During the COVID-19 Pandemic — United States, June 24–30, 2020. MMWR Morb Mortal Wkly Rep 2020; 69: 1049–57.

6         Lebwohl D, Kay A, Berg W, Baladi JF, Zheng J. Progression-Free Survival. Cancer J 2009; 15: 386–94.

Guest post: Angst among surgeons during the COVID-19 crisis

Yongbo An (@an_yongbo), Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
 
Vittoria Bellato (@vittoriabellat0), Department of Surgery, Minimally Invasive Unit, Università degli Studi di Roma “Tor Vergata”, Rome, Italy
 
Gianluca Pellino (@GianlucaPellino), Department of Advanced Medical and Surgical Sciences, Universita degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy; Department of Colorectal Surgery, Vall d’Hebron University Hospital, Barcelona, Spain
 
Tsuyoshi Konishi (@yoshi_konishi), Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, 1400 Pressler Street, Unit 1484, Houston, Texas 77030
 
Giuseppe S Sica (@sigisica), Department of Surgery, Minimally Invasive Unit, Università degli Studi di Roma “Tor Vergata”, Rome, Italy
 
on behalf of S-COVID Collaborative Group

The epicentre of the SARS-CoV2 outbreak has been shifting from place to place, hitting many countries in the world. The feelings of angst, distress and desperation have also spread along with the virus among healthcare workers (HCW). It is hard to forget the early voices from the frontline HCW, the rapidly worsening situation during the escalating phase,1which seems to be occurring again in countries that are being hit by the second wave.2

https://platform.twitter.com/widgets.js

The early working experience originally narrated by an Italian doctor Daniele Macchini. English translation by Silvia Stringhini on twitter.

Surgeons’ fear of getting infected by SARS-CoV-2 and developing COVID-19, as well as the change of their daily surgical practice, has been described since the early stage of the pandemic.3 Despite the varying rates of infected people among countries, surgeons have experienced globally a common angst about the virus due to their high-risk job. 

China, as the first country facing the virus, had limited previous knowledge and experience about COVID-19 to refer to. The HCW were immediately frightened by what they witnessed: emergency rooms filled with patients infected by an unfamiliar type of virus, followed by overwhelmed intensive care units. Since the escalation of the epidemic in Wuhan was so rapid, most elective surgeries in China were cancelled and not resumed until mid-March 2020.4 The fear of the unknown had forced most hospitals to stop surgical practice, leading to a serious backlog of surgical patients. Due to lack of staff, many surgeons were frequently re-employed to work in intensive care unit or fever clinic, causing a feeling of inadequacy to work in a medical area for which they were not trained. During the post-epidemic period, the mental stress among surgical staff persisted due to the extensive surgical backlog and the additional work involved in ensuring a safe environment for newly hospitalized patients through creation of selective safe routes and adequate personal protective equipment (PPE) adoption.5

Surgeons in Europe have probably suffered even worse situations. Fear of getting infected has led HCW to feel a threat to their life because of their work. In the early phase, a vascular surgeon from the UK spoke out about such dreads, and acknowledged the importance of looking after surgeon’s mental well-being.6 Otolaryngology-ENT, and maxillofacial specialties were regarded as those at highest risk, therefore, a team from the Head and Neck Unit of the Royal Marsden NHS Foundation Trust and Lewisham Child and Adolescent Mental Health Services analysed the impact of COVID-19 on the mental health of surgeons. The fear of contracting the virus and transmitting to family members represented important factors affecting mental health of HCW during the pandemic.7 Many HCW were self-isolating from their family and many decided to left their homes, while others moved into their garages and basements.8, 9

In US, where the pandemic hit in the summer, surgeons also expressed their angst during work. Shortage of PPE and lack of a coordinated pandemic plan from the central government further exacerbated the fear. During the early phase of the pandemic, surgeons from US declared “guilt and fear are to some extent pervasive in medical practice”, “any provider during this time that says they aren’t impacted is not being truthful with themselves”.10, 11

Another key element that has generated stress among doctors has been the uncertainty of how to treat a completely unknown disease. Data were lacking and indications were changing frequently, causing confusion and misinformation. An explicative example is given by guidelines on use of surgical masks: WHO and many governments initially banned the use of adequate PPE in hospital daily practice when dealing with asymptomatic people, due to lack of scientific evidence and lack of stock of PPE.

Surveys among HCW have become a fast and effective way to provide updated data to guide medical choices during this unprecedented time.12, 13 A survey from Mexico investigated personal feelings among 150 vascular surgeons; with ten short but detailed questions, the results of the survey showed that the greatest fear was to infect their families. More than half of the respondents thought that PPE supply was inadequate and 61% of the respondents did not agree with the way government and the Health secretary have handled the pandemic.14

https://platform.twitter.com/widgets.js

A survey among 150 vascular surgeons from Mexico, investigating their feelings and life during COVID-19 pandemic.

Another regional survey from a tertiary academic centre in Singapore investigated psychological health condition among 45 surgical providers during the pandemic. The results revealed that 77.8% of respondents were experiencing fear of contracting COVID-19, and 88.9% reported fear of spreading the virus to their families. Doctors in training suffered worse mental health condition than other colleagues;15 a national survey explored factors associated mental health disorders among 1001 young surgical residents and fellows in France, finding that enough PPE supply and sufficient training on preventing COVID-19 could decrease the possibility of developing anxiety, depression and insomnia.16During early April 2020, the S-COVID Collaborative conducted a global survey among surgeons from 71 countries, revealing that the fear of getting infected by COVID-19 or infecting others was indeed very common among the respondents from all over the world. Furthermore, the analysis showed that shortage of surgical masks, dissatisfaction towards hospital’s preventive measures and experiencing in-hospital infections were associated with surgeon’s fear.17

https://platform.twitter.com/widgets.js

A global survey of surgeons’ fear of getting infected by COVID-19, conducted by S-COVID group

Indeed, factors associated with surgeons’ fear, elicited from the above global survey, are preventable. Since comprehensive meta-analysis and reviews have clarified the effectiveness of face masks,18 and additional supply strategies have been established,19 the shortage of face masks and other PPE could be fully managed. Another action which could reduce anxiety and stress of the HCW would be intensive SARS-CoV-2 screening. In Wuhan, universal screening for all 10 million residents was completed in May. “The physical lockdown on the city was lifted on April 8, and after the testing campaign was finished, the psychological lockdown on Wuhan people has also been lifted.” Such universal screening would also reassure the surgeons as well as other HCW.20, 21

Unfortunately, before the normal life and work could be resumed (even if known as “new normality”), the second wave of the pandemic started. Sentiments of fear, angst, anxiety are likely to impact heavily citizens and HCW. The surgical staff is already facing heavier workload due to the backlog of surgical patients during the pandemic – which might be even worse, as many did not have enough time to recover from the first wave. If one takes into account that more than 28 million elective surgeries have been cancelled or postponed worldwide,22 the resulting picture is extremely worrisome. Besides the upcoming enormous workload, asymptomatic COVID-19 patients are still acting as threats for hospitals, making the daily work of surgeons harder than usual.23

It is well acknowledged that surgeons are always working under great pressure, burnout due to work is a common finding among surgeons.24 However, the pandemic has generated an unprecedented situation, in which HCW are being overwhelmed by their angst and fears. Medical litigations are also likely to increase in the next months, adding to HCW sense of uncertainty and inappropriateness.25 It is mandatory that the public opinion, the press and social media contribute to offer a balanced and realistic overview of the conditions in which HCW are being forced to work; and that societies and entities collaborate to create strategies to prevent such conditions,26 and to help HCW who are struggling, left alone.  

References

1.         Con le nostre azioni influenziamo la vita e la morte di molte persone. https://www.ecodibergamo.it/stories/bergamo-citta/con-le-nostre-azioni-influenziamola-vita-e-la-morte-di-molte-persone_1344030_11/.

2.         Coronavirus pandemic: Tracking the global outbreak. https://www.bbc.com/news/world-51235105.

3.         Scalea JR. The Distancing of Surgeon from Patient in the era of COVID-19: Bring on the Innovation. Annals of surgery 2020.

4.         Wuhan hospitals resume regular services amid COVID-19. https://news.cgtn.com/news/2020-03-16/Wuhan-hospitals-resume-regular-services-amid-COVID-19-OTRxkICEr6/index.html.

5.         Fu D, Yu X, Wang L, Cai K, Tao K, Wang Z. Gearing back to normal clinical services in Wuhan: frontline experiences and recommendations from mental health perspective. The British journal of surgery 2020;Epub ahead of print. https://bjssjournals.onlinelibrary.wiley.com/doi/full/10.1002/bjs.11912

6.         Surgeon reveals fear of dying on frontline in coronavirus fight. https://www.examinerlive.co.uk/news/west-yorkshire-news/surgeon-reveals-fear-dying-frontline-18025220.

7.         Balasubramanian A, Paleri V, Bennett R, Paleri V. Impact of COVID-19 on the mental health of surgeons and coping strategies. Head & neck 2020.

8.         #COVID19ESCP TweetChat: Antonino Spinelli shares insights from the frontline in Italy. https://www.escp.eu.com/news/2069-covid19escp-tweet-chat-antonino-spinelli-shares-insights-from-the-frontline-in-italy.

9.         Doctors reveal they are moving into their garages and basements to isolate themselves from their own families while they fight coronavirus – as they urge others to stop going out. https://www.dailymail.co.uk/femail/article-8136037/Doctors-isolating-FAMILIES-prevent-spread-COVID-19.html.

10.       Fear, guilt, and a surgeon’s wait for Coronavirus. https://exponentsmag.org/2020/03/21/fear-guilt-and-a-surgeons-wait-for-coronavirus/.

11.       The second wave of COVID-19: another potential tsunami – prepare to avoid being swept away. https://www.escp.eu.com/news/2093-the-second-wave-of-covid-19-another-potential-tsunami-prepare-to-avoid-being-swept-away.

12.       Ielpo B, Podda M, Pellino G, Pata F, Caruso R, Gravante G, Di Saverio S. Global attitudes in the management of acute appendicitis during COVID-19 pandemic: ACIE Appy Study. The British journal of surgery 2020. https://bjssjournals.onlinelibrary.wiley.com/doi/full/10.1002/bjs.11999

13.       Bellato V, Konishi T, Pellino G, An Y, Piciocchi A, Sensi B, Siragusa L, Khanna K, Pirozzi BM, Franceschilli M, Campanelli M, Efetov S, Sica GS. Screening policies, preventive measures and in-hospital infection of COVID-19 in global surgical practices. Journal of global health 2020;10(2): 020507.

14.       Life as a vascular surgeon in Mexico during the COVID-19 pandemic. https://vascularnews.com/life-as-a-vascular-surgeon-in-mexico-during-the-covid-19-pandemic/.

15.       Tan YQ, Chan MT, Chiong E. Psychological health among surgical providers during the COVID-19 pandemic: a call to action.n/a(n/a).

16.       Vallée M, Kutchukian S, Pradère B, Verdier E, Durbant È, Ramlugun D, Weizman I, Kassir R, Cayeux A, Pécheux O, Baumgarten C, Hauguel A, Paasche A, Mouhib T, Meyblum J, Dagneaux L, Matillon X, Levy-Bohbot A, Gautier S, Saiydoun G. Prospective and observational study of COVID-19’s impact on mental health and training of young surgeons in France.n/a(n/a).

17.       An Y, Bellato V, Konishi T, Pellino G, Sensi B, Siragusa L, Franceschilli M, Sica GS, Group S-CC. Surgeons’ fear of getting infected by COVID19: A global survey.n/a(n/a).

18.       Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet (London, England) 2020.

19.       Zeidel ML, Kirk C, Linville-Engler B. Opening Up New Supply Chains. New England Journal of Medicine 2020: e72.

20.       Wuhan completes mass COVID-19 screening. http://www.chinadaily.com.cn/a/202006/03/WS5ed6f96ea310a8b24115a6a8.html.

21.       Xiong Y, Mi B, Panayi AC, Chen L, Liu G. Wuhan: the first post-COVID-19 success story.n/a(n/a).

22.       Collaborative C, Nepogodiev D, Bhangu A. Elective surgery cancellations due to the COVID-19 pandemic: global predictive modelling to inform surgical recovery plans. BJS (British Journal of Surgery). https://bjssjournals.onlinelibrary.wiley.com/doi/full/10.1002/bjs.11746

23.       Bellato V, Konishi T, Pellino G, An Y, Piciocchi A, Sensi B, Siragusa L, Khanna K, Pirozzi BM, Franceschilli M, Campanelli M, Efetov S, Sica GS, Group S-CC. Impact of asymptomatic COVID-19 patients in global surgical practice during the COVID-19 pandemic.n/a(n/a).

24.       Kadhum M, Farrell S, Hussain R, Molodynski A. Mental wellbeing and burnout in surgical trainees: implications for the post-COVID-19 era. The British journal of surgery 2020. https://bjssjournals.onlinelibrary.wiley.com/doi/10.1002/bjs.11726

25.       Pellino G, Pellino IM, Pata F. Uncovering the Veils of Maya on defensive medicine, litigation risk, and second victims in surgery: care for the carers to protect the patients. Colorectal disease : the official journal of the Association of Coloproctology of Great Britain and Ireland 2020.

26.       Pellino G, Vaizey CJ, Maeda Y. The COVID-19 pandemic: considerations for resuming normal colorectal services. Colorectal disease : the official journal of the Association of Coloproctology of Great Britain and Ireland 2020.

worried woman in mask looking out of the window

Guest post: Mental health and BRCA

Exploring psychological consequences for BRCA+ women in the post-Covid era

by Grace Brough1, Douglas Macmillan2, Kristjan Asgeirsson2, and Emma Wilson1
1Division of Epidemiology and Public Health, University of Nottingham
2Nottingham Breast Institute, Nottingham University Hospitals NHS Trust

Whilst the global female population has a 12.5% overall lifetime risk of developing breast cancer and a 1.3% risk of ovarian cancer (Howlader et al), the risk for those with a pathogenic BRCA1 or BRCA2 mutation is 60-70% and 10-20% respectively (van Egdom et al). BRCA1 mutation carriers have a particularly high incidence of triple-negative breast cancer (TNBC) (Greenup et al) for which treatment options are more limited and always include chemotherapy (Bianchini et alCollignon et al). 

In the NHS, asymptomatic women with at least a 10% estimated chance of having a BRCA mutation are offered testing (NICE).  Knowing you are at high risk of breast cancer and the increased likelihood of TNBC is a well-documented  cause of anxiety (Wenzel et al) and many women describe having a BRCA gene mutation as living with a ‘ticking time bomb’. Bilateral mastectomy with or without reconstruction is the only proven method of drastically decreasing risk and can improve quality of life (McCarthy et al) and decrease anxiety (Rebbeck et al) for correctly selected cases, despite its potential negative outcomes (Gahm et al). 

The strongest predictor for choosing to undergo risk reducing mastectomy is having a first or second degree relative die from breast cancer (Singh et al), a factor associated with fear, anxiety and vulnerability to this disease.  Most women choosing it have clear and long-considered reasoning and have been prepared for it through well-established pathways guided by genetic counsellors, specialised surgeons and nurses.  It is however, classified as elective surgery. As such, waiting lists for risk reducing mastectomies are impacted by other healthcare challenges and needs. 

Being on NHS waiting lists causes anxiety across all specialities (Carr et al). With an estimated 10 million people on NHS waiting lists in the post-COVID era, levels of health-related anxiety within the population are anticipated to significantly increase. For BRCA mutation carriers, the prevailing fear is that they will develop breast cancer whilst on the waiting list.  This reality is related to the length of time on the waiting list and represents potential conversion of a risk reducing scenario to one of chemotherapy and cancer surgery, often with other treatments, and all the life changing and life threatening implications of cancer diagnosis.   

In pre-COVID times, there was a 18 week target time from referral to treatment for risk reducing mastectomy (UK GOV). Due to COVID, the majority of elective surgery has been put on hold and Breast Units now anticipate at least a 2-year waiting list for non-cancer surgery, such as risk reducing mastectomies, delayed reconstructions, and revisional surgery. Prioritisation is a difficult necessity.

In addition, breast screening services ceased or were significantly curtailed as a result of COVID related restrictions, and this adds to an already complex situation for BRCA mutation carriers.  Not only may they now get breast cancer whilst on the waiting list, but they are denied the reassurance afforded by negative screening, or potentially a diagnosis may be delayed (Maringe et al). 

Combining pre-existing anxieties of being a BRCA mutation carrier, new waiting list anxieties, and wider COVID general health anxieties, the post-COVID era has the potential to see significant levels of psychological burden in this population, which could negatively impact mental health and quality of life. Providing additional psychological support is likely to be the short-term solution, though this is also resource limited. In reality the collateral impact of pandemic related consequences for healthcare in this particular group may not be realised for some time. 

My first time.

Claire Donohoe (@clairedonohoe6), Editorial Assistant BJS, Consultant Oesophagogastric surgeon, Dublin

(a follow-on to “With the End in Mind”1)

Who was the first patient you discussed their own death with? 

For me, it was my grandmother. I was a medical student and she was slowly declining from heart and renal failure. During her last admission to hospital, she was clearly fearful of impending death – she told me that she felt better when I sat with her as she slept – which she did more frequently than, previously  – as she feared that she might not wake up from her nap. 

I assume that the medical staff noted our relationship. It was suggested to me that I might discuss resuscitation orders with her. I agreed that this was a timely discussion for her. Having participated in resuscitation during my rotation in the Emergency Department wanted to spare her this futile treatment.

I can only imagine how bumbling I was in that conversation. My mother had noted when I started medical school that I would have to work on my “bedside manner”.

On reflection

I definitely lacked the requisite vocabulary to not frighten her more. However, I do remember trying to reassure her that this was to prevent harmful treatment, that wouldn’t help her. And I would have loved to have had the phrase “It’s an order so that we hold your hand when you are dying rather than pound your chest”( see here2 and here3 for more).

I would have loved to have known better to narrate the process of dying to her; to relieve her of her fear that slipping away would be painful and something that she should fight. That her increasing need for sleep was normal and it differed from slipping into unconsciousness so that she could sleep more easily.

An ending

In the end, I failed her. As her medical team predicted, she had a cardiac arrest watching a soap on TV a few weeks later. And I failed her, because I hadn’t had that delicate conversation with her wider family. In my naïve medical student approach, she was the patient and I and the medical team knew her wishes. But I forgot that she existed surrounded by a devoted family who wanted to keep her forever. 

She arrested, panic ensued, an ambulance was called, CPR was commenced and she had cardiac compressions en route to the hospital where she was pronounced dead. Family members arrived to the resus bay to sit with her and hold her hand. With better communication, we could have done that in her own home. 

What I wish I’d known

In the world of surgery, we are always learning4. I regularly wish that I had already mastered all of the communication skills that I need. In a recent blog post1 I wrote about an approach to end of life communication entitled “Difficult Conversations – Why we need to talk about dying”. Dr Lara Mitchell has produced resource materials with Open Change, an educational design company, to give healthcare professionals a visual approach to support these difficult conversations  around dying with compassion and honesty. It aims to give framework, concepts and phrases to support these conversations for health and social care.

She has now produced a video discussing the framework in more detail and with references to other sources5. I found it useful and hope that you do too. In the meantime, I’ll continue to work on my bedside manner, aiming to communicate with openness, compassion and empathy.

References

1. Donohoe C. With the End in Mind. 2020.

2. Mannix K. 2020. Available at: https://ne-np.facebook.com/DrKathrynMannix/posts/today-i-was-asked-a-great-question-about-deciding-whether-or-not-a-ventilator-is/2949195348436749/. 

3. Mannix K. Dot MD talk. 2019.

4. Chamberlain C, Blazeby JM. A good surgical death. BJS (British Journal of Surgery) 2019; 106(11):1427-1428.5. Mitchell L. Difficult conversations- we need to talk about dying. 2020.

Prioritising Surgical Treatment in Coronavirus Pandemic “Salford Score”

Prof Gordon Carlson CBE FRCS

Background

In light of the need to assess priorities of surgical treatment in a resource-limited environment, NHS England have set out clinical priorities for cancer surgery. However, these priorities do not take into account the vulnerability of the patient to excess morbidity and mortality in the event of Covid-19 infection. It seems evident that, particularly when undertaking elective surgery, the vulnerability of a patient to Covid-19 related morbidity and mortality might be equally important to considerations of the timing of surgery as the underlying disease for which surgery is proposed.

The resource allocation system currently in use at Salford Royal NHS Foundation Trust (which has since been adopted throughout other hospitals at Northern care Alliance) takes both of these factors into account, by producing a score based upon the need to prioritise treatment on purely disease related grounds and also the vulnerability of the patient to Covid-19. The aim is to generate a score which can be used to determine the overall surgical treatment priority of a group of patients, possibly from different surgical subspecialties, when surgical resources have become limited as a result of the Covid-19 pandemic. The score allows different groups of surgeons and hospital management to objectively determine how temporarily limited resources might be allocated. It is meant to help guide collective discussions, not to be a rigid indicator of those patients for whom surgical treatment should be deferred, and it should be used to support, not to replace MDT discussions.

Cancer Surgery Priority

The NHS England Suggested Priority for Cancer surgery is summarised in table 1 below.

PriorityDescription
Priority level 1a• Emergency: operation needed within 24 hours to save life
Priority level 1b• Urgent:operation needed with 72 hours
Based on: urgent/emergency surgery for life threatening conditions such as obstruction, bleeding and regional and/or localised infection permanent injury/clinical harm from progression of conditions such as spinal cord compression
Priority level 2Elective surgery with the expectation of cure, prioritised according to:
• Surgery within 4 weeks to save life/progression of disease beyond operability.
Based on:urgency of symptoms, complications such as local compressive symptoms, biological priority (expected growth rate) of individual cancers

NB. Local complications may be temporarily controlled, for example with stents if surgery is deferred and /or interventional radiology.
Priority level 3Elective surgery can be delayed for 10-12weeks with no predicted negative outcome.
Table 1: NHS England Suggested Priority for Cancer surgery

However we could make resource allocation easier if we devised a simple, objective and consistent way of summarising the two variables which influence decision making – clinical treatment priority and risk of COVID-related adverse outcome, into one numerical score;

The “Salford Score” simplifies this to:

  • Priority 1a = score (P)1
  • Priority 1b = score (P)2
  • Priority 2 = score (P)3
  • Priority 3 = score (P)4

Vulnerability

A second component of this relates to vulnerability of the patient in case of a COVID infection (see table 2).

Vulnerability scoreOutcome in case of COVID infection
Vulnerability level 1• Unlikely to have excess mortality (compared to a completely fit individual < 70 years old) in the event of Covid infection
Vulnerability level 2• Likely to have significant excess mortality compared to a completely fit individual < 70 years old in the event of Covid-19 infection, but would ordinarily receive invasive ventilation in that eventuality
Vulnerability level 3• Extremely likely to succumb to Covid-19 infection and would not ordinarily receive invasive ventilation in that eventuality
Table 2: Vulnerability score

Salford Score

A resource allocation score of PxV, is then calculated so that a fit patient at high risk of imminent death of underlying disease (P1or 2) and unlikely to have excess Covid mortality (V1) would score 1 or 2 (and get urgent surgical treatment), whereas a patient with a non-immediately life threatening condition (P4) for which surgical treatment could be safely be delayed for 12 weeks and who would not, as a result of severe pre-existing medical comorbidity, be intubated etc. should they develop Covid and respiratory failure (V3) would score 12 and we would not proceed to offer surgery until the current resource position changes.